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A B S T R A C T

Single modality MRI data is not enough to depict and discern the cause of the underlying brain pathology of
Alzheimer's disease (AD). Most existing studies do not perform well with multi-group classification. To reveal the
structural, functional connectivity and functional topological relationships among different stages of mild
cognitive impairment (MCI) and AD, a novel method was proposed in this paper for the analysis of regional
importance with an improved deep learning model. Obvious drift of related cognitive regions can be observed in
the prefrontal lobe and surrounding the cingulate area in the right hemisphere when comparing AD and healthy
controls (HC) based on absolute weights in the classification mode. Alterations of these regions being responsible
for cognitive impairment have been previously reported. Different parcellation atlases of the human cerebral
cortex were compared, and the fine-grained multimodal parcellation HCPMMP performed the best with 180
cortical areas per hemisphere. In multi-group classification, the highest accuracy achieved was 96.86% with the
utilization of structural and functional topological modalities as input to the training model. Weights in the
trained model with perfect discriminating ability quantify the importance of each cortical region. This is the first
time such a phenomenon is discovered and weights in cortical areas are precisely described in AD and its pro-
dromal stages to the best of our knowledge. Our findings can establish other study models to differentiate the
patterns in various diseases with cognitive impairments and help to identify the underlying pathology.
1. Introduction

Alzheimer's disease (AD) is a chronic irreversible neurodegenerative
disease that starts insidiously and gradually worsens over time. It begins
with mild cognitive decline and can progress to the aphasia and alter-
ations in behavior. Nowadays, more than 29 million people worldwide
are diagnosed with AD, and the number is projected to nearly triple by
2060 (Matthews, 2019). At present, AD is incurable and it commonly
presents later in life. Scientists are exploring early intervention tech-
niques in AD to prevent the disease from worsening. There are several
hypotheses for the underlying pathology of AD. These include the genetic
hypothesis, cholinergic hypothesis, amyloid hypothesis, and tau protein
hypothesis (Bertram, 2019; Mesulam, 2019; Reddy, 2019; Busche, 2019).
However, the cause of the disease is not fully known and the diagnosis
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depends heavily on the medical history, behavioural observations, and
neuropsychological testing such as the commonly used mini-mental state
examination (MMSE) (Pinto, 2019).

In contrast to more subjective diagnostic techniques, imageology
provides advanced analysis for the in-depth observation of the human
brain (Zhao, 2017; Sarraf, 2016; Wolk, 2017). Ryan et al. segmented the
MRI images into gray matter, white matter and CSF, and computed their
spearman correlations in the AAL template. The occipital lobe has been
implicated as part of the cortical signature of cognitive impairment
(O'Dell, 2019). Boyd et al. detected the disturbed cortical laminations of
the medial temporal lobe in patients with AD (Kenkhuis, 2019). Keith
et al. proved the volume of hippocampus was closely related to AD in a
longitudinal study on the rate of hippocampal atrophy (Josephs, 2017).
In addition to the research on morphology, functional connectivity in the
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human brain has also attracted the attention of researchers (Passamonti,
2019; Hafkemeijer, 2017; Yamashita, 2019). Rather than structural
changes in a single region of the brain, abnormal connectivity patterns
are the underlying cause behind cognitive decline. Franzmeier et al.
demonstrated that higher global left frontal cortex connectivity was the
functional substrate for cognitive reserve that helped to maintain
episodic memory relatively well in the early stages of AD (Franzmeier,
2017). Li et al. evaluated the connectivity covariance among different
brain regions for mild cognitive impairment (MCI), AD and healthy
controls (HC). There is a corresponding decrease in connectivity going
from HC to MCI to AD, especially in the temporal lobe, occipital-parietal
lobe and parietal-temporal lobe (Li, 2018). Until now, no consensus has
been reached regarding which human brain cortical or subcortical area is
the most affected in AD.

Machine learning makes it possible to assess the importance of each
brain area by building classification models with emphasis on optimal
regional weights. Recently, many researches have achieved high accu-
racies in recognition of AD patients through training learning models.
Lyduine et al. investigated the W scores and discrimination maps for the
binary classification of MCI and AD, and obtained 83.8% accuracy (Collij,
2016). Massimiliano et al. trained a support vector machine (SVM)model
with radial-basis function kernel and demonstrated a performance for the
recognition of MCI and ADwith the area under curve (AUC) value of 0.82
(Grassi, 2019). Khazaee et al. proposed direct-graph based measures for
the representation of functional connectivity in the cortex, and compared
groups of machine learning algorithms in the binary classification of HC,
MCI and AD (Khazaee, 2016; Khazaee, 2017; Hojjati, 2017). Various
centralities from the adjacent connectivity matrix were computed in the
putative 264 functional areas and an accuracy of 88.4% was obtained.

High accuracy in binary classification for HC, MCI or AD is of little
significance in clinical neurocognitive evaluation. There would not be
only two classifications of patients with cognitive disorders. It is very
important to explore the method that can accurately discriminate mul-
tiple groups in different stages of MCIs and AD. Ramzan et al. proposed a
deep learning approach for the multi-class classification of AD stages
with high accuracies (Ramzan, 2020). The Alzheimer's Disease Neuro-
imaging Initiative (ADNI) tracks the progression of AD in the human
brain with clinical, imaging and genetic biomarkers through the process
of normal aging, early mild cognitive impairment (EMCI), late mild
cognitive impairment (LMCI) to dementia or AD (Weiner, 2017). Previ-
ously, we proposed an effective classification method based on the
multimodal parcellation HCPMMP, and nearly achieved 80% accuracy of
any three groups among HC, EMCI, LMCI and AD through the SVM al-
gorithm. In this study, the deep learning model GoogLeNet was improved
to accommodate the ensemble input of structural, functional connectivity
and functional topological modalities. Weights trained in the model were
mapped into 360 cortical areas and achieved more than 95% recognition
accuracy in four-group classification.

2. Materials and method

2.1. Data source

160 subjects including EMCI, LMCI, AD patients and healthy controls
were downloaded from the ADNI2 database. To ensure the consistency
and reproducibility of results in this study, only those subjects scanned by
Philips were considered. Table 1 shows the basic statistical information
Table 1. Basic statistical information of acquired subjects.

HC EMCI LMCI AD

Total 43 53 34 30

Male: Female 16:27 20:33 21:13 12:18

Average 75.51 71.68 72.35 73.10

SD 6.27 6.39 8.26 6.81
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of acquired subjects in this paper. Structural MRI with T1 weighting and
functional MRI of resting-state were downloaded in the company of filed
map information.

2.2. Parcellation

There were three kinds of cortical parcellation atlas adopted in this
study for the purpose of comparison: Desikan-Killiany atlas, DKT atlas,
and a multimodal parcellation method proposed by HCP (HCP MMP). In
the Desikan-Killiany atlas, 34 cortical regions of interest (ROIs) for each
hemisphere were extracted, and in the DKT atlas, the number was 31.
Both parcellations can be conveniently achieved by FreeSurfer with the
subject's structural MRI data. Up until now, the HCP MMP provides the
most fine-grained cortical parcellation with 180 areas in each hemi-
sphere. Due to its multimodal-based preprocessing (dealing with struc-
tural MRI, functional MRI, connectivity and functional topological data)
and strict scanning data requirement, the parcellation for the ADNI
database was achieved by joint HCPMMP (JHCPMMP) method proposed
by us (Sheng, 2019). Briefly, structural MRI data were first preprocessed
into T1w space with FreeSurfer, and then functional MRI series were
registered with structural MRI in fMRIprep software. Finally, both
structural and functional MRI data were translated into CIFTI space in
which 32,492 surface vertices per hemisphere and 26,298 subcortical
voxels were defined.

2.3. Multimodal cerebral cortical measures

As a result of parcellation, all the vertices making up the cerebral
cortex for each subject were divided into N areas. N equaled 62, 68 and
360 respectively for the DKT atlas, Desikan-Killiany atlas, and HCPMMP.
Each subject was measured by multimodality: structural, functional
connectivity and functional topological modalities. For structural mo-
dality, cortical thickness and curvature were considered as important
roles in measuring morphological changes in the cerebral cortex for
cognitive impairment and Alzheimer's disease. The shape of structural
modality was 2 � N.

Functional connectivity was generated between any two regional
fMRI series through computing the N � N correlation matrix or adjacent
matrix in which ROIs in each atlas were defined as nodes and the cor-
relation coefficients were used as the weights of edge. A dynamic pro-
portion of the strongest weights (dPSW) was reserved to eliminate noise
and spurious connectivity. Both weighting and binarizing processes were
carried on this sparse N � N matrix.

For topological modality, Brain Connectivity Toolbox (BCT) was
adopted for complex-network analysis of weighted and binary functional
connectivity computed ahead. In weighted connectivity, seven regional
measures including strength (S), clustering coefficient (CC), local effi-
ciency (LE), betweenness centrality (BC), eigenvector centrality (EC),
page-rank centrality (PC) and degree (D) were computed for each ROI in
the cerebral cortex. In binary pattern, eight regional measures consisting
of strength (S), clustering coefficient (CC), local efficiency (LE),
betweenness centrality (BC), eigenvector centrality (EC), page-rank
centrality (PC), k-coreness centrality (KC) and flow coefficient (FC)
were computed. Overall, the shape of functional topological modality
was 15 � N.

2.4. Multimodal deep learning

After the preparation of multimodal cerebral cortical measures, a
deep learning procedure was implemented in Paddle-Paddle framework
to achieve the recognition of different MCIs, AD patients and healthy
controls. Sheng et al. proposed a JMMP-LRRmethod which combines the
logistic regression-recursive feature elimination (LR-RFE) and JHCPMMP
for three classifications of AD, MCI, and normal aging (Sheng, 2020). For
compatibility with multimodality, the training model used in this study
was adapted from one of the most successful deep learning networks:
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GoogLeNet. Originally, GoogLeNet was designed for image recognition in
computer vision, and it was the champion of the ImageNet Large Scale
Visual Recognition Challenge 2014 (ILSVRC2014). In this study, the
connectivity matrix was regarded as an N � N input to GoogLeNet,
focusing on the discrimination of details in global brain connectivity
among different groups. The unique structure ‘Inception’ which played
the part of a fundamental component in GoogLeNet largely reduced the
dimension of input as well as extracted the deep features through
multi-kernel and multi-layer convolutions. The default shape of input in
GoogLeNet is 224 � 224, while the structure of the network was modi-
fied to cater to the actual shape of connectivity in this study. More
working principles and parameters of GoogLeNet can be found in the
reference (Szegedy, 2014).

The key step of multimodal deep learning is to integrate various
representations of data, which involves unifying dimensions and scales of
different modalities. We designed a two-stage cascade concatenation for
blending inputs. In GoogLeNet, outputs of convolutions and max-pooling
were concatenated along the last axis, by default the axis would be the
number of convolution kernels used in each inception. Accumulated with
the stack of inception, the final number of concatenated outputs ended
with 1024� 1, which represents the ‘learnt’ deep features corresponding
to the original N � N input. For structural and functional topological
modalities, inputs were directly merged along the first dimension, thus
the shape of integrated modalities was 17 � N. In order to integrate with
the functional modality data, the 17 � N matrix was flattened into (17 �
N) � 1 array. Consequently, the shape of the two-stage cascade concat-
enation was (17 � N þ1024) � 1. It would be (2,078 � 1), (2,180 � 1)
and (7,144 � 1) for the DKT atlas, Desikan-Killiany atlas and HCP MMP
respectively.

Data segmentation was also a key process in deep learning. In this
study, we separated data into training and test sets and kept the ratio of
those as 4:1. The batch size was set to be 8, and the number of epochs was
13. Based on these conditions, the total number of steps reached was 208.
Group normalization (GN) was implemented before training. Different
from global normalization or batch normalization, GNwas able to restrict
the scale of samples at the group level rather than covering up the subtle
changes among cognitive impairment patients.

Multi-class recognition was considered as a possibility estimation for
each group in this study, thus the SoftMax activation function was
Figure 1. (A) Multimodal analysis method proposed in
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employed to map the learning result to a probability value. Eqs. (1), (2),
(3) shows how to assign the probability.

Yi ¼
X17 * Nþ1024

j¼1

wT
j xj þ b (1)

Pi ¼ eyi
.Xð17* Nþ1024Þ

j¼1
eyj (2)

Xthe number of classes

i¼0

Pi ¼ 1 (3)

where, i is the number of classes, in this study, i ¼ 4, representing EMCI,
LMCI, AD and HC, j is the number of deep learning features, here it is (17
� N þ 1024).

For the multimodal inputs, two-stage cascade concatenation resulted
in xj. Adding each xj multiplied by a given weight wj with a fixed offset b,
the output Yi depicts the contribution of each deep feature. Essentially,
the problem of classification is to find the appropriate weight for each
cortical area. In SoftMax function, Pi was assigned by Eq. (2), and the sum
of all the probabilities is 1.

3. Results

The working diagram is illustrated in Figure 1A. Figure 1B shows the
two-stage cascade concatenation of multimodal inputs in the deep
learning module. 160 subjects in four groups were first preprocessed and
parcellated by three cortical atlases. Structural, functional connectivity
and topological functional measures were extracted and computed in
those parcellated ROIs as a representative of multimodality in each
subject cerebral cortex. All the subjects were divided into training and
testing sets. Each modality was inputted into the deep learning module,
going through the neural network, and was concatenated as a whole
input to SoftMax function. Four-class recognition was iteratively opti-
mized through the performance of the model trained.

Figure 2 shows the comparison of training accuracy in different
cortical atlases. Figure 2A-C are processes of training with structural
modality in HCPMMP, Desikan-Killiany atlas and DKT atlas respectively.
this study; (B) Multimodal deep learning module.



Figure 2. Comparison of training accuracy in different cortical atlases.

Figure 3. Classification performance in the ensemble of structural and functional topological modalities.
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The blue curve represents the smoothed changes in training accuracy,
and the curve in orange is the actual value of testing accuracy during
steps. By comparison, the classification accuracy in HCP MMP gets the
best testing performance of 86.76%, followed by DKT atlas, and the last is
Desikan-Killiany atlas. The subgraph at the bottom right in each figure is
the loss value in function with steps, from which loss in HCP MMP shows
the fastest decline. For multimodal classification comparison in HCP
MMP, Figure 2D shows the smoothed testing results of various combi-
nations of structural, functional and functional topological modalities. It
can be observed that the ensemble of structural and functional topolog-
ical modalities reaches the highest score in testing accuracy at 96.86%,
followed by 86.76% in the structural modality, 59.03% in the functional
topological modalities, 37.44% in the functional modality, and 28.83%
in the ensemble of structural and functional modalities.

Figure 3 shows the contrastive analysis of classification performance
in the ensemble of structural and functional topological modalities. For
the input of functional topological modalities, there are seven weighted
and eight binary network measures computed in this study. Thus,
Figure 3A is the classification result with cortical thickness for compar-
ison. Fig.3B-H is the result of the ensembles of thickness with weighted
BC, CC, LE, PC, S, D and EC respectively. Fig.3I-P is the result of the
ensembles of thickness with binary S, CC, KC, BC, EC, FC, LE and PC
respectively. Among all these results, the ensemble of thickness with
binary local efficiency reaches the highest classification accuracy of
96.86%. The changes of train and test performance during learning here
are used to illustrate the convergence speed in each model. The steeper
the curve is, the faster the model converges. Thus, in addition to the
highest classification accuracy shown in Fig.3O, the model is the most
accurate compared with others. Furthermore, the smallest distance be-
tween training and testing curves in Fig.3O indicates the lowest risk of
overfitting. Table 2 lists the confusion matrix and classification perfor-
mance for each category corresponding to the model in Fig.3O.

Four models were trained by using the modalities of structural and
functional topological in HCP MMP for the HC/EMCI/LMCI/AD recog-
nition. Figure 4 illustrates the changing process of model trained varying
with steps for the recognition in AD patients. Weights in the model are
mapped onto 360 HCP MMP cortical areas. The red color represents
positive weights and the blue represents the negative. The first two rows
are lateral and medial views for the left hemisphere, and the last two are
those for the right. Each column is the resulting model and its classifi-
cation accuracy within a training step. In the beginning, values of weights
are assigned randomly. After the first step of training, the distribution of
weights can be roughly observed even though the result is in no sense of
high accuracy. With the increasing number of steps in training, the dis-
tribution of the weights is more stable and changes subtly. Training ac-
curacy reaches 100% when there are around 100 steps.

Figure 5A shows the final trained model with weights mapped for
multi-class classification in lateral and medial views. As mentioned
above, the color red represents positive weights and the blue represents
the negative. To clearly observe the weight emphasis of each cortical
Table 2. Confusion matrix and classification performance comparison.

True

HC EMCI LMCI AD

Prediction HC 9 0 0 0

EMCI 0 8 0 0

LMCI 0 0 6 0

AD 0 0 1 8

Accuracy Precision Recall F1 Score

Classification Performance HC 100% 1.0 1.0 1.0

EMCI 100% 1.0 1.0 1.0

LMCI 96.8% 1.0 0.86 0.92

AD 96.8% 0.89 1.0 0.94

5

area, in Figure 5B, all the negative weights are changed to absolute
values, and weights of 70% are retained. Color in red means a more
substantial weight in the model. For both Fig.5A and Fig.5B, columns are
mapped in model weights for HC, EMCI, LMCI and AD groups. With the
deterioration of cognition, the cingulate cortex area becomes more
important (or substantial) in the classification model, especially in the
right hemisphere when observed in the medial view.

Figure 6 shows the final trained model for HC/EMCI/LMCI/AD
classification in the anterior view of the frontal lobe with weights map-
ped. It can be observed that with the evolution of cognitive impairment,
more cortical areas are involved in the related cognitive classification
model; the large weights present a concentrated state, and drifts to the
upper part of the frontal lobe.

4. Discussion

Various parcellation atlases based on structural, functional connec-
tivity and functional topological cerebral cortical measures were
analyzed and modeled for multi-class recognition in this study. A
multimodal deep learning network was reformed to adapt to the
complicated meaning and shape of input. The ensemble of thickness with
binary local efficiency modalities was found to be the optimum feature
combination for the HC/EMCI/LMCI/AD classification.

Desikan-Killiany and DKT are the most commonly used cortical
atlases in neuroscience, while there are only 62 or 68 ROIs extracted for
bilateral hemispheres. Limited parcellation restricts the ability to explore
which areal feature takes the impact on cognitive impairment, and is the
reason why the majority of research failed to achieve high recognition
results in multi-group classifications. Since the fine-grained multimodal
parcellation HCP MMP was proposed, it facilitates the study of more
refined functional areas that are cognition related. In Fig.2A-C, the model
in HCP MMP has the fastest convergence speed and the highest training
and testing accuracies. The training stays constant at around 160 steps
with the loss value dropping sharply throughout the iterations. While at
the same steps for Desikan-Killiany and DKT atlases, models do not
converge on a stable level and the values of training fluctuate greatly.
Meanwhile, classification accuracies are not as high as HCP MMP are.
Therefore, the follow-up experiments shown in Figure 2D were based on
the multimodal cortex analysis in HCP MMP.

In other studies (Zhang, 2012; Sun, 2019; Hett, 2018), multimodal
research which usually combines MRI with PET, CSF or genetic infor-
mation have only regarded MRI as a single modality instead of exploring
the relevancy among structural, functional connectivity and functional
topological characteristics in MRI. Significant alterations in the structure
of the cerebral cortex often lead to dysfunctions of connectivity between
areas. It has been proved that the topology in connectivity contributes to
the normal work of brain (Yu, 2016). From Figure 3, cortical thickness is
observed as the most sensitive feature in identifying cognitive impair-
ment. The training accuracy reaches the highest value with functional
topological modality. In addition, performances of binary functional to-
pological measures are better than the weightings, which mean that
binarization helps to reduce the spurious connectivity and noise instead
of causing information loss. The ensembles of thickness with binary
clustering coefficient (Figure 3J), betweenness centrality (Fig.3L), flow
coefficient (Fig.3N) and local efficiency (Fig.3O) obtain more than 0.9
accuracy. It is consistent with the previous studies that local consistency
and centrality are often used to measure whether the transmission of
areal signals functions normally, and these network measures are
important and effective functional topological indicators for the
measuring of brain functional connectivity.

Deep learning omits the explicit time-consuming feature selection.
Almost all conventional machine learning methods require selection of
inputs or their combination will result in better performance in classifi-
cation no matter the filter or wrapper strategy implemented. In this
study, multimodal data were directly inputted into the reformed deep
learning and their weights approach the truth in iterations. Previously,



Figure 4. Changing weights in each HCP MMP area during training for the AD patient's recognition.

Figure 5. (A) Weights in the final model for multi-class classification. (B) The absolute value of A), 30% of the lowest weights in model are eliminated.

Figure 6. Mapped weights for HC/EMCI/LMCI/AD in anterior view of the frontal lobe. The upper row is for the left hemisphere, and the bottom row is for the right.
Absolute weights of the multi-class classification model are all reserved.
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Table 3. Comparison with major state of AD classification studies.

Study Sample size Classification Accuracy

Wang (2021) 120 Binary-group 100%

Mehmood (2021) 300 Binary-group 98.7%

Sharma (2021) 509 Binary-group 86.7%

Yang (2020) 79 Binary-group 80.8%

Wu (2020) 42 Binary-group 77.5%

Janghel (2020) 54 Binary-group 99.9%

Mutahari (2020) 200 Binary-group 86.0%

Sheng (2019) 96 Binary-group 95.8%

This study 160 Four-group 96.8%

Table 4. Significant areas with greater weights in classification model.

HCP Area Brodmann Area Functional Network Key Studies

PF cortex BA 40 Ventral Attention Chai (2019), Shan (2018)

L-d32 BA 32 Default Mode Yokoi (2018),
Chiaravalloti (2017)R-p32pr

L-5m BA 5 Somatomotor Jones (2019), Dong
(2018)

R-MI Middle Insular
Area

Ventral Attention Roquet (2017), Anor
(2017)

R-Pres BA 27 Visual Parker (2019), Zhao
(2019)
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we attempted to find the optimal combination from thousands of
candidate features such as SVM before any machine learning (Sheng,
2019). However, with the increasing scale of multimodal features, results
of classification are very unstable and hard to be reproduced by the same
random search strategy of feature selection.

Over 0.95 classification accuracy was obtained for multi-class
recognition. Amoroso (2018) reported their random forest based deep
neural network accomplished 38.8% for the recognition of four classes.
That was just a few percentages higher than the baseline of 25%.
Essentially, this is caused by the trained models which cannot reflect the
subtle alterations among MCIs and AD, especially for the gap between
EMCI and LMCI. We investigate some of the major state of art models
used for diagnosis of AD and list the comparisons in Table 3. In this study,
other groups of controlled experiments including the ensembles of
thickness with binary flow coefficient (93.75%), thickness with binary
clustering coefficient (93.30%), thickness with weighted local efficiency
(91.74%) and thickness with binary betweenness centrality (91.74%)
concurrently state the superior performance for the HC/EMCI/LMCI/AD
recognition.

Weights mapping into the cortical areas express how much an areal
feature can impact cognitive impairment. In Figure 4, the PF cortex
(BA40) in the bilateral hemisphere are in dark red and the left BA44 area
are dark blue in step 100. These areas are the most important two regions
of the cerebral cortex that are linked to speech, which are named Wer-
nicke's area (BA39 and BA40) and Broca's area (BA44 and BA45). Many
researchers have proved these regions are closely responsible for the
Alzheimer-related aphasia (Kurra, 2019; Whitfield, 2014; Iancheva,
2019). In addition to these two main regions, areas including Area L-d32
(BA32), Area L-5m (BA5), Area R-MI (Middle Insular Area), Area R-Pres
(BA27), Area R-p32pr (BA32) show significant large weights in the AD
recognition model. Studies from the Neurosynth (https://www.neuros
ynth.org/) report that these regions are highly correlated with human
cognitive ability. Cera (2019) compared the functional connectivity (FC)
patterns of the cingulate subregions (BA32) in a sample of mild cognitive
impairment patients and healthy elderly subjects. They found that
compared to MCI, the HC cohorts showed significant increased level of
FC for the ventral part of the anterior cingulate cortex. Carlesimo (2015)
7

tested the volumes of hippocampal subfields from 30 AD and 41 MCI
patients, found a prevalent atrophy of the presubicular-subicular com-
plex (BA27) from the early phases of AD and suggested atrophy in this
area could be the earliest hippocampal anatomical marker of Alzheimer's
disease. Table 4 lists the areas with greater weights in classification
model and their locations in functional networks. These areas are mainly
located in the ventral attention network, default mode network, soma-
tomotor network and visual network. In Figure 5, the obvious drift of
cognitive related regions can be observed in the prefrontal lobe and
surrounding the cingulate area in the right hemisphere compared with
the AD and HC absolute weights in the classification model. It is the first
time such a phenomenon is discovered and weights in cortical areas are
given exactly for Alzheimer's disease and its prodromal stages.

Several aspects can be improved in this study. First, the acquired 160
subjects were divided into a training set and testing set, and this may
introduce overfitting to some extent. The trained model gradually tends
to improve the accuracy of classification in the known testing set and
results in losing the recognition ability in future samples. Therefore, as
the number of samples increases, the dataset should be separated into
three parts: training, validation, and testing. The testing set should not be
used during training and validation procedures. Second, with the
development of deep learning, more and more efficient neural network
models are constantly proposed and applied in various research domains.
Considering the continuity of cognitive impairment and its gradual
pathological process, longitudinal modality in the fMRI series should be
available features as the input to the recurrent neural network.

Clinically, this machine learning would be very helpful in identifying
people who are at the early stages of cognitive impairment. Usually,
patients are identified when they have already had significant neuro-
degeneration. Early detection through this method is accomplished by
non-invasive methods. Currently, cerebrospinal fluid (CSF) sampling for
biomarkers and positron emission tomography (PET) scans are
commonly used to diagnose patients with cognitive impairments, espe-
cially if there is a question about whether AD is the true underlying pa-
thology. Those methods are limited by cost as well as discomfort to the
patient. In current practice, machine learning on already available MRI
data may prevent the need for more expensive or invasive testing. In
addition, this can identify a wider network of people which would be not
only impactful in the inclusion of more participants in clinical trials, but
also help evaluate for other contributors which could potentially be
adjusted (underlying depression, high-risk medications). Clinical trials
often fail to demonstrate benefit in AD. This challenge arises from the fact
that when the disease reaches the clinically apparent phase, the trial
medications may not be as effective as they would be in patients who are
in the preclinical or prodromal phases. In addition, cognitive impair-
ments are a manifestation of many neurodegenerative disorders such as
frontotemporal dementia and Lewy body dementia.

5. Conclusion

To reveal the structural, functional connectivity and functional to-
pological relationships among different stage of MCIs and AD patients in
this paper, 160 subjects in EMCI, LMCI, AD and HC were acquired from
ADNI2 and a novel method was proposed for the analysis of regional
importance with an improved deep learning model. Obvious drift of
cognitive related regions can be observed in the prefrontal lobe and
surrounding the cingulate area in the right hemisphere when comparing
AD and HC absolute weights in the classification model. It is in consensus
with previous reports that the alterations of these regions are responsible
for cognitive impairment. Different parcellation atlases of the human
cerebral cortex were compared, and the fine-grained multimodal par-
cellation HCPMMP performed the best with 180 cortical areas per
hemisphere. In multi-group classification, the highest accuracy was
96.86% with the ensemble of structural and functional topological mo-
dalities as input to training model. Weights in the trained model with
perfect discriminating ability quantify the importance of each cortical

https://www.neurosynth.org/
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region. This is the first time such a phenomenon is discovered and
weights in cortical areas are given exactly for AD and its prodromal stages
as far as we know.

Our multi-model deep learning method demonstrates the function-
ality of the human brain and the topographical connections between
different areas of the human neuroanatomy, and identifies patterns in
patients with EMCI, LMCI and AD. Future models can potentially help to
specify the underlying pathology in a patient with cognitive impairments
using patterns found in the different disease processes. Based on our
findings, other study models can be established to differentiate the pat-
terns in various diseases with cognitive impairments and help to identify
the underlying pathology.
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